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CHANNEL MAINTENANCE BY TRAINING STRUCTURES: GUIDANCE 

FOR NUMERICAL MODEL MESH DEVELOPMENT 

PART I: INTRODUCTION 

1. Natural rivers and estuaries are quite shallow relative to their 

width; typical depth-to-width ratios are less than 1/10, which implies that 

the flow distribution is dominated by bottom friction rather than the drag 

from the channel banks (Chow 1959). Man-made training structures, however, 

are a sufficient anomaly in this environment to reverse the relative impor- 

tance of these two. The training structure forces large velocity and water- 

surface gradients and, perhaps more importantly, severe changes in these gra- 

dients. Thus the structure will profoundly influence the flow pattern over a 

large region. 

2. The complexity of the flow fields produced by training structures 

often precludes analyses short of physical or numerical modeling. Two- 

dimensional numerical models founded upon the shallow-water equations are 

common and are perhaps the simplest model capable of reasonably examining 

training structures. This report discusses the limitations of the numerical 

representation of these equations on applications with training structures. 

3. The focus is upon the mesh development. Too often the factors in 

forming an adequate mesh are considered only after precision or stability 

problems are encountered, perhaps in final runs. A properly fabricated mesh 

from the onset will save time and expense avoiding costly reruns in a piece- 

meal fashion. 

Obiectives 

4. The objectives of this investigation are to describe the influence 

of geometry and the mesh upon the precision of shallow-water numerical model 

results and to produce simple instructions and rules of thumb for mesh devel- 

opment. With this in mind, the following elements of mesh production are 

considered: 



a. Resolution. - 
b.  Mesh orientation. 

c. Skewness in the grid. - 
d. Oscillation suppression. - 
e. Bathymetric effects. - 

5. Assessments are made from a set of first-order linear model equa- 

tions applied in a Galerkin finite element framework. All calculations are 

for steady model equations; therefore, no discussion of time discretization 

errors such as numerical dispersion is included. Steady models provide an 

uncomplicated method to evaluate grid-related problems. The first three items 

listed in paragraph 4 are resolved via the calculation of the truncation error 

in a one- or two-dimensional finite element model using a linear basis. The 

last two items are determined from the amplification caused by a one- 

dimensional finite element representation of a steady-state linearized 

shallow-water model. 



PART 11: NUMERICAL BACKGROUND 

The Shallow-Water Euuations 

6. The shallow-water equations in one dimension may be written 

H, + Uy + HU, = 0 

U, + UU, = uU, - g(H + x), 

where* 

H = depth 

t = time 

U = velocity 

x = distance 

u = apparent viscosity 

g = acceleration due to gravity 

z = channel bottom elevation 

and the subscripts indicate differentiation. The basic assumptions in this 

formulation are mild bed slope and hydrostatic pressure distribution. The 

subsequent analysis is for steady flow conditions, which can be obtained from 

the previous equations by simply dropping the terms H, and U, . These 

equations can be derived from Euler's equations in a systematic fashion as in 

Stoker (1957). 

Numerical Considerations 

7. The numerical representation of the shallow-water equations can be 

subject to significant discretization errors, the introduction of which is a 

concern. The analytic solution of the differential equations (shallow-water 

equations) preserves the relationship among derivatives of variables specified 

by differential equations at EVERY point in the domain. The numerical model, 

on the other hand, is solved based upon a finite number of points. If the 

* For convenience, symbols and unusual abbreviations are listed and defined 
in the Notation (Appendix B). 



model is properly formulated, then as the number of mesh points increases to 

infinity, the analytic solution is recovered. This property is termed 

consistency. 

8. As a result of the limited amount of information involved in a 

single equation, truncation error is introduced. In the case of a global 

expansion method, all data in the domain are used for each numerical equation, 

thus providing a low truncation error. In finite difference and finite ele- 

ment methods, only a limited number of neighboring points are used, reducing 

computational expense but producing much more truncation error. The trunca- 

tion error associated with a particular numerical scheme is found by a Taylor 

series expansion of each nodal value about a common node location. In the 

following work, simple model equations are used to assess the truncation error 

in two spatial dimensions for linear basis using triangular and quadrilateral 

finite elements. The extension to finite difference is readily apparent. The 

following sections shall consider the truncation error of various finite ele- 

ment patches for a simple first-order model equation. Stability problems that 

may arise as a result of resolution and by the variation of bathymetry will 

then be discussed. 

Background - for Finite Elements 

9. The Galerkin finite element technique as applied to differential 

equations will be approached through the idea of the approximation or interpo- 

lation of a function by some simpler set of functions. This in turn leads 

directly to application to differential equations in which relationships 

between the function and its derivatives are to be maintained. A variable 

such as concentration or velocity components can be approximated as a combina- 

tion of functions. For example, the concentration C(x) can be approximated 

as a linear function as 

C(x) = alx + a, , for 0 5 x 5 1 ( 3 )  

where a, and al are constants. This can be rewritten equivalently as 

C(x) = Co(l - x) + C,x , for 0 5 x 5 1 ( 4  



where 

c, = C(0) 

C, = C(1) 

are values at x = 0 and x = 1 , nodal values. Equation 4 can then be 

simplified to the form 

where 

41(x) = (1 - X) 

42(x> = x 

j = an index 

It should be apparent that if a higher order approximation is desired, it is 

necessary only to include additional functions and corresponding nodal values. 

The particular type of function in Equation 5 is called a Lagrange polynomial; 

other function types can be developed, but these equations are in common use 

and will be used exclusively throughout this report. The functions used to 

approximate the variable C(x) are termed interpolation or, alternatively, 

basis functions. 

10. The finite element approach is to apply these interpolation func- 

tions over each element or region that subdivides the total region, In this 

manner the global solution can be approximated precisely without the need for 

a high-order polynomial. The total basis function for a node will then be the 

combination of functions for this node in all elements joining this node. 

11. As an example of an application, consider the approximation of the 

function sin (x) over the interval 0 < x < T by linear polynomials. Only 

two elements will be used, though any number could be used. The approximation 

may be written as 

where 



x-XL f(x) = - , for x,sx.<x, 
XR - XL 

Within each element, L and R denote the left and right node locations. 

The basis functions within the element are: 

where 4 is the one-dimensional linear shape function. To form the complete 

basis function dl , for example, combine from element 1 with 4 from 

element 2 (Figure 1). 

Node 0 1 2 

w 

X 0 
element 1 element 2 

n12 n 

Figure 1. Finite element grid for approximation of sin x 

12. Further assume that C, = C2 = 0 , which precisely matches the 

function sin (x) at the boundaries and simplifies the problem of finding the 

proper value of C1 . An obvious way to choose C1 is again to simply let 

C1 = sin ( 7 r / 2 )  = 1. The resulting approximation would be as shown in 

Figure 2. 

SIN X 

0.8 3 

X 

Figure 2. Direct interpolation 



As one can see, this representation leaves something to be desired. It is 

consistently low. Another method would be to define error as e - [f(x) 
- 4j (x)Cj ] , where f (x) is the function to be approximated (sin (x) in this 

3 
case) and 1 4j(x)Cj is the approximate function. Minimize the error norm 

j 
given by 

where i2 is the domain, by taking the partial derivative with respect to each 

unknown Cj . The result is 

J, 4i(~) [f(x) - mj(x)Cj] dx = 0 , for each i 
5 

which is a set of algebraic equations to solve. An alternative way to write 

this is 

(4i e) = 0 (10) 

where this is termed the inner product form. This indicates that the error is 

made orthogonal to the functions 4 termed the test functions. Here it is 

shown that if the test functions are chosen to be the same as the interpola- 

tion or basis functions, the error is minimized. The result for the example 

is C1 = 1.216. Figure 3 illustrates that this is a better choice than the 

previous case. 

X 

Figure 3. Galerkin approximation 



The concept of using the same test functions as basis functions is the 

Galerkin technique in finite elements. 

13. This technique needs to be applicable to differential equations. 

For example, consider the one-dimensional (1-D) steady-state convection 

diffusion equation 

UC, - DC, = 0 , for 0 < x <  1 (11) 

where D is the diffusion coefficient. Note that here the differential equa- 

tion explicitly states a relationship between the function and its various 

derivatives. In this case there is a relationship between the function slope 

and curvature. The approximation needs to preserve this relationship as 

nearly as possible. The straightforward application is to let C(x) 

= 1 qij (x)Cj . The Galerkin finite element approximation is then written as 
j 

[4i ,'U 4<(x)cj - D 4:'cj] = 0 , for each #i 
j 5 

where the prime indicates differentiation. This notation avoids subscripts j 

and x for different operations. It would appear that 4(x) must have at 

least second derivatives that are nonzero. However, 4(x) can be linear by 

using integration by parts putting a derivative on the test function. It 

should be noted that it can be shown that the Galerkin technique provides an 

"optimum" approximation when dealing with the function or any even-numbered 

derivatives. Unfortunately, in the case of the convection operator, which 

involves first derivatives only, there is no "norm" to be minimized by using 

the Galerkin technique. However, this technique is commonly used for convec- 

tion problems as is the case in TABS-2. 

14. The terms have been supplied that are necessary to understand the 

finite element examples, which follow. 



PART 111: RESULTS AND DISCUSSION 

15. The steady-state shallow-water equations are often used to repre- 

sent estuarine or riverine conditions in which convection is much more impor- 

tant than diffusion. Therefore a simple model equation that is only first 

order shall be considered: 

fx = 0 (13) 

This function can be thought of as convection of some species concentration 

f , in which the convection velocity has a value of 1 in the x-direction only. 

This example model equation will be used to evaluate 1-D and two-dimensional 

(2-D) model schemes. 

Resolution 

16. The resolution supported in a region determines the precision of 

the numerical results. However, there are few definitive suggestions about 

the grid size and the rate of expansion. In addressing the expansion rate 

question, consider the truncation error for the expansion of a 1-D finite 

element representation of fx = 0 . Representing this numerical equation in 

inner product form gives 

for all 

The notation simply means the integral over the domain of the product of the 

two functions (separated by the comma). The function f(x) is represented by 

an expansion in the basis function 4 , i . . ,  f(x) = 1 4j(x)fj , and the 

prime indicates differentiation. The subscript indicates the nodal index, as 

shown in Figure 4. The inner product uses the same test function as that used 

as a basis for the function f(x) , thus a Galerkin weighted-residual 

statement. 

L 1 12 L3 
-..b- 

0 1 2 3 

I-D GRID 

Figure 4. 1 - D  grid 



17. If it is considered that the gradients in water levels and veloci- 

ties and changes in gradients might be quite large at a dike, then the small- 

est elements need to be there. However, not being able to afford this resolu- 

tion throughout the domain, the mesh size needs to be expanded in a prudent 

fashion such that the error would not be amplified severely. With this in 

mind, the truncation error associated with the boundary and at a typical loca- 

tion within the field shall now be considered. A single algebraic equation 

results from each selection of the test function q3i(x) . The function is 

nonzero only over the elements that contain node i . Thus, the equation 

includes only a few nodal values. 

18. If i = 0 is chosen, then the algebraic equation associated with 

the boundary is selected. As implied by Figure 4, the basis chosen is linear 

with the resulting algebraic equation of 

Expanding this expression in a Taylor series expanded about xo and solving 

for f, gives the truncation error 

Truncation error = - 1/2 L1 f, - 1/6 L: f, - .  . . 

where L is the distance between adjacent nodes. Performing the same opera- 

tions on a typical test function q 3  gives the algebraic equation and the 

truncation error 

Truncation error = -1/2(Li+1 - L,)f, - 1/6 (18) 

Therefore, assuming f, at the boundary is greater than or equal to that out 

in the interior, if the element size varies as Li = iL1 (the element size 

increases such that the second element is length 2L1 , the third 3L1 , and 

so on), the precision in the mesh is no worse than that of the boundary. 



Orientation and Skewness 

19. Again considering the truncation error associated with a simple 

model problem f, = 0 , the 2-D finite element representation is investigated 

as either a set of triangles or quadrilaterals in the vicinity of a hypotheti- 

cal dike. The simple model equation is analogous to the steady-state trans- 

port of f when the velocity is along the x-direction. This is completely 

general in that the coordinate system could be rotated to match the flow 

direction and result in this equation. Figure 5 illustrates this case. 

NUMERICAL GRID 

Figure 5. Schematized dike in a flow field 

The flow is in the x-direction and the dike is perpendicular to the flow, 

i.e., in the y-direction. Note that downstream of the dike tip very large 

derivatives are expected in the y-direction but not in the x-direction. Thus 

a truncation error in which only y-derivatives are present will be emphasized. 

20. The finite element statement and the region or patches over which 

it will be applied are as follows: 

(4i(x,y) , Ed: (x,y)f,) = 0 , for each i 

where 

4 = 2-D linear basis functions, either triangle or quadrilateral 
elements 

' = partial derivative with respect to x 



TRIANGLE ELEMENT QUADRILATERAL ELEMENT 
PATCH PATCH 

Figure 6. Typical 2-D finite element patches 

The patches shown in Figure 6 result from the nonzero region of the test func- 

tion 45 . This is the only region that needs to be considered since in the 

finite element method when i = 5 , the product of this test function is being 

integrated with the partial differential equation and so the only contribution 

to the resulting algebraic equation is from the nonzero region of the test 

function 45 , as shown in the following equations: 

a. Triangles: - 

b.  Quadrilaterals: 

where Y is distance normal to the x-axis. 

21. These algebraic equations can be used to calculate the truncation 

error by expanding in a Taylor series about the location of node 5. It is 

assumed for simplicity that the metrics involved in the geometric transforma- 

tion are exact. In this manner, Figure 7 was developed showing the truncation 

error for the triangular- and quadrilateral-based finite element patches under 

three circumstances. 

22. Figure 7a indicates the truncation error for the case in which both 

grids form an orthogonal patch oriented with the flow. The truncation error 

of the quadrilateral patch includes an additional term beyond that of the 
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a, Oriented with the flow 

b. Possible rotation 

c. Skewness 

Figure 7. Leading terms of truncation error for f, = 0 



triangular mesh. It is not a term fyyy ; thus the truncation error is 

probably small for both cases (remember that gradients in the x-direction are 

small). Possible rotation is shown in Figure 7b, and skewness (collapse of 

the element) in the patch is shown in Figure 7c. Both cases deal with a small 

rotation or skewness angle of a , where 0 < a << 1 . 
23. The inclusion of a slight rotation results in two additional terms 

in the truncation error of the triangular case. More importantly, one of 

these terms involves fyyy , which could be quite large in the vicinity of the 

dike tip. The quadrilateral patch, on the other hand, had no change in trun- 

cation error for this condition. 

24. The effect of a small degree of skewness was identical to the small 

rotation for the triangular patch, including the potentially large term 

fyyy . The quadrilateral patch with this slight skewness was changed to 

include an additional term fuy . 

25. It may then be concluded that for best results, grids in the vicin- 

ity of the dike tip should be aligned with the flow direction and orthogonal. 

If this is not possible, it would be preferable to use quadrilateral elements 

in this immediate vicinity. 

Oscillation Suppression 

26. A common problem with shallow-water numerical models is the appear- 

ance of spatial oscillations around steep changes in the flow variables. This 

is actually a problem in transport models as well and results from the first- 

order derivatives in the differential equations. To illustrate the problem, 

consider the case of the steady convection-diffusion equation 

Uf, = Df, 

where 

U = convection velocity 

x = coordinate direction 

Subscripts indicate differentiation with respect to x . Representing f as 

discrete nodal values in a linear basis gives 



where is the interpolation function. The algebraic equation set resulting 

from the Galerkin finite element representation of the convection diffusion 

equation for a linear basis and a uniform grid is 

where R = UL/D and is known as the Peclet number or the cell Reynolds 

number. If it is assumed that 

where 

c = a constant 

p = the numerical root 

there are two roots p = 1 , (2/R - 1)/(2/R + 1) . The first root implies 

that f is a constant; the second, however, allows variability in f . But 

note that if p is negative, the model representation will oscillate. Thus 

it must be noted what restrictions guarantee that p will be positive. 

Limiting the minimum value to zero, the relationship to prevent oscillation in 

the model is 

Therefore, it is possible to refine the grid to prevent oscillations, provided 

the diffusion is not negligible. 

27. The extension to the shallow-water equations is not straightforward 

as there is a set of equations, one of which (conservation of mass) contains 

no diffusion term at all. Therefore, there is no means to damp water-surface 

oscillations in a model using linear basis for both water-surface and veloc- 

ity. It has been shown (Platzman 1978, Walters and Carey 1983) that by using 

a mixed interpolation (quadratic for velocity and linear for water surface) 

the 2L wavelength oscillation does not appear in the water surface. This 

representation is used in many shallow-water models, in particular, the TABS-2 

hydrodynamic model RMA-2V (Thomas and McAnally 1985). The velocity 



oscillation is controllable via the diffusion and mesh resolution. The rela- 

tionship for small Froude number, F = U/(~H)'/~ , reverts to the same rela- 

tionship found for the convection-diffusion model (for details see Appendix A) 

where L is the distance between velocity nodes. In the 2-D case, it is 

important to note that the streamwise diffusion or viscosity and resolution 

are the important parameters in suppression of oscillations. It should also 

be noted that while the 2L wavelength oscillation in the water surface will 

be suppressed, longer wavelength oscillations can occur. 

Bathvmetric Effects 

28. In model applications, numerical model behavior appears to be much 

less stable when the bathymetry changes rapidly. Limitations are imposed by 

the model equations themselves due to the mild slope assumption and the lack 

of variation of velocity over depth. However, this instability is in fact 

numerically induced. 

29. In addition to the oscillation suppression by diffusion and resolu- 

tion discussed previously, which were evaluated for flat bottom conditions, a 

variable bathymetry must now be considered. The problem will be simplified by 

excluding viscosity and using linear basis for both water surface and veloc- 

ity, the reasoning being that the purpose of this exercise is illustrative, 

and can be accomplished even without these additional complications. 

30. The 1-D steady-state shallow-water equations may be written as: 

where U is the longitudinal velocity. These equations can be linearized by 

considering small perturbations about a solution. An obvious solution of this 

set of equations is that the water surface is flat and that the velocity is 

zero, or 



H + z = Constant 

u = o  

A perturbation about this solution can be represented as 

O < u < < l  

where u and h are the perturbation quantities. Dropping all terms involv- 

ing products of the perturbation quantities, the resulting linearized 

equations are 

The solution to these equations is straightforward. Certainly h is a con- 

stant, and u can be determined by supplying a depth variation. Assume 

so that every shift of a distance L along x results in the depth being 

multiplied by E (the subscript o indicates the value at the origin). 

Therefore, the solution is 

31. The question now becomes, what is the numerical solution to this 

same problem? Again using a linear basis for Galerkin finite elements and 

assuming a numerical solution of the form: 

the roots are found to be 



The first root matches the analytic result at the nodes. The second root is a 

numerical artifact; and since it is negative, a node-to-node oscillation 

results. Consider the roots shown in Figure 8. 

Depth Ratio per Element, 5 
"i 

Figure 8. Depth sensitivity 

The upper curve is the actual root and the lower curve the spurious root. For 

flat bottom channels, 5 = 1 and the spurious root for 5 = 1 is p = -1 . 
If the flow deepens in the direction of flow, corresponding to > 1 , p is 

less than 1 and the oscillations will be dampened. However, if the depth 

decreases in the direction of flow, 5 < 1 , the oscillations will be 

amplified, possibly resulting in the model becoming unstable. Therefore, 

flows in a direction of decreasing depth will be prone to instability and will 

require additional resolution for the same diffusion coefficient. 



PART IV: CONCLUSIONS 

3 2 .  The precision and stability of a given numerical model depend 

heavily upon the associated computation mesh. When large gradients are gener- 

ated by the inclusion of training structures, grid-related problems are 

magnified. The following guidance is noted: 

a. A rule of thumb for the element expansion rate as one moves away - 
from a structure is Li = iL1 . That is, the element adjoining 
the boundary is L1 , the next element out is of size 2L1 , the 
third is 3L1 , and so on. 

b.  Near the dike tip, it is important to orient the grid with the 
flow direction and make the elements as nearly orthogonal as 
possible. 

c. Quadrilateral elements appear to be more forgiving than trian- - 
gular ones in cases in which the orientation and skewness are 
more extreme. 

d. Oscillations in shallow-water models employing the mixed inter- - 
polation with linear water surface and quadratic velocity will 
have oscillations if UL/u > 2 . While 2L wavelength oscilla- 
tions in water surface should not occur, oscillations with 
longer wavelengths are possible, possibly leading to misleading 
conclusions. 

e. Depth decreasing in the direction of flow renders the model less - 
stable ; the converse is true for depth increasing. 
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APPENDIX A: CONTROL OF OSCILLATIONS IN TABS-2 

Introduction 

1. A common problem in numerical models involving transport is the 

presence of oscillations ("wiggles") in the solution. This is a direct result 

of the numerical method as applied to a first-order differential equation (any 

odd number order actually). Often some form of mixed interpolation is used to 

alleviate this problem (TABS-2, for example). In the case of the shallow- 

water equations, the water surface or depth is interpolated linearly and the 

velocity is quadratic. It has been shown (Platzman 1978; Walters and Carey 

1983)* that this will have a node-to-node oscillation in the velocity field 

but not in the water surface; thus, including viscous effects in the momentum 

equation can control this. (Note that if the water surface has oscillations, 

there is no mechanism to control this with a standard Galerkin scheme.) These 

analyses, however, did not include viscous effects in the calculation. 

2. This appendix calculates the necessary viscosity to eliminate oscil- 

lations in a mixed interpolation finite element model of the one-dimensional 

(1-D) shallow-water equations and the conditions under which oscillation in 

water surface may be present. 

Mixed Inter~olation Stability Criteria 

3. The discrete equations resulting from the Galerkin weighted-residual 

statement of the 1-D shallow-water equation using mixed interpolation are as 

follows**: 

a. Conservation of mass: - 

* References cited in this appendix are included in the References at the 
end of the main text. 

** For convenience, symbols and unusual abbreviations used in this appendix 
are listed and defined in the Notation (Appendix B). 



b.  Conservation of momentum: 

and a similar equation to A3 centered about node 4 

where 

Uo,ho = a solution of the shallow-water equations in which U, and h, 
are constants 

h,u = perturbation quantities 

g = acceleration due to gravity 

v = apparent viscosity 

d = length of an element 

These equations are for perturbation equations about the solution 

on the typical finite element patch, as shown in Figure A l .  

Figure Al. Finite element patch 

All other subscripts indicate nodal values. Here the elements contain three 

nodes; u is nodally defined at all three nodes while h is defined only at 

the end nodes (knots). Equations A1 and A2 result from the weight function 

for node 3 applied against the conservation of mass and momentum equations, 

respectively. Equation A3 is the result of the test function for node 2 

applied to the conservation of momentum equation. A similar equation results 

from the application of the test function at node 4; however, as those ele- 

ments are uniform, this equation is identical to Equation 3 shifted one 



element. Note then that there are three equations within this patch enforcing 

momentum relationships and only one for conservation of mass. This is a 

direct consequence of the mixed interpolation and the use of the Galerkin 

method. Write the nodal values as 

A A 

where p is a numerical root, which may be complex, and U and h are 

arbitrary constants. Making these substitutions and finding the solutions to 
A A 

Equations A1-A3 for which U = h f 0 yields the expressions: 

where F is the Froude number and R is the Peclet number. The second 

expression (A9)  is simply the statement that a constant Uj and hj is a 

solution. Here, 



where d is the length of an element, which corresponds to 2L from para- 

graph 27, main text. Equation A8 then represents potential artificial solu- 

tions. The equation is resolved by realizing that most estuary and river 

applications involve flow conditions characterized by small Froude numbers. 

Thus considering 0 < F << 1 , the perturbation equation is derived: 

From this analysis one can show that if R = 2 , a node-to-node oscillation is 

possible in the velocity field. However, the water surface will contain no 

oscillation. Thus it is desirable to have R 5 2 , which is essentially iden- 

tical to the well-known cell Peclet criterion for linear basis. 

4. If the cell Reynolds number drops to 1/2, an oscillation of wave- 

length 2d is possible. Note that this corresponds to an oscillation in 

water surface as well as velocity. The amplitude is small for this mode, but 

an oscillation in the linearized model will exist in water surface. 

Conclusion 

5. To avoid oscillations in TABS-2 model results, one should make sure 

that 

This also states that higher flow rates will require increased eddy viscosity. 

6. It is possible to have an oscillation in the water surface even 

without including nonlinear effects. 



APPENDIX B: NOTATION 

Concentration 

Length of an element 

Diffusion coefficient 

Error 

Concentration 

Nodal value of f 

Froude number 

Acceleration due to gravity 

Depth 

Node index progressing in the x-direction 

Distance between adjacent nodes 

Peclet number or cell Reynolds number 

Time 

Perturbation quantities 

Velocity 

Solution of the shallow-water equations in which Uo and ho are 
constant 

Distance coordinate direction 

Distance normal to x-axis 

Channel bottom elevation 

Angle 

Apparent viscosity 

Numerical root 

One-dimensional linear shape function 

Two-dimensional linear basis functions, either triangular or 
quadrilateral elements 

Domain 
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